Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.688
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 97, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229300

RESUMO

Defective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1. Together with cDIPs, OP7 chimera DIPs were produced in shake flasks in the absence of infectious standard virus (STV), rendering UV inactivation unnecessary. However, only part of the virions harvested were OP7 chimera DIPs (78.7%) and total virus titers were relatively low. Here, we describe the establishment of an OP7 chimera DIP production process applicable for large-scale production. To increase total virus titers, we reduced temperature from 37 to 32 °C during virus replication. Production of almost pure OP7 chimera DIP preparations (99.7%) was achieved with a high titer of 3.24 log10(HAU/100 µL). This corresponded to an 11-fold increase relative to the initial process. Next, this process was transferred to a stirred tank bioreactor resulting in comparable yields. Moreover, DIP harvests purified and concentrated by steric exclusion chromatography displayed an increased interfering efficacy in vitro. Finally, a perfusion process with perfusion rate control was established, resulting in a 79-fold increase in total virus yields compared to the original batch process in shake flasks. Again, a very high purity of OP7 chimera DIPs was obtained. This process could thus be an excellent starting point for good manufacturing practice production of DIPs for use as antivirals. KEY POINTS: • Scalable cell culture-based process for highly effective antiviral OP7 chimera DIPs • Production of almost pure OP7 chimera DIPs in the absence of infectious virus • Perfusion mode production and purification train results in very high titers.


Assuntos
Vírus Defeituosos , Vírus da Influenza A , Salicilatos , Vírus Defeituosos/genética , Vírus da Influenza A/genética , Replicação Viral , Antivirais/farmacologia
2.
Sci Rep ; 13(1): 20936, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017026

RESUMO

Influenza A virus (IAV) defective interfering particles (DIPs) are considered as new promising antiviral agents. Conventional DIPs (cDIPs) contain a deletion in the genome and can only replicate upon co-infection with infectious standard virus (STV), during which they suppress STV replication. We previously discovered a new type of IAV DIP "OP7" that entails genomic point mutations and displays higher antiviral efficacy than cDIPs. To avoid safety concerns for the medical use of OP7 preparations, we developed a production system that does not depend on infectious IAV. We reconstituted a mixture of DIPs consisting of cDIPs and OP7 chimera DIPs, in which both harbor a deletion in their genome. To complement the defect, the deleted viral protein is expressed by the suspension cell line used for production in shake flasks. Here, DIP preparations harvested are not contaminated with infectious virions, and the fraction of OP7 chimera DIPs depended on the multiplicity of infection. Intranasal administration of OP7 chimera DIP material was well tolerated in mice. A rescue from an otherwise lethal IAV infection and no signs of disease upon OP7 chimera DIP co-infection demonstrated the remarkable antiviral efficacy. The clinical development of this new class of broad-spectrum antiviral may contribute to pandemic preparedness.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Vírus Defeituosos/genética , Vírus da Influenza A/genética , Replicação Viral , Antivirais/farmacologia
3.
PLoS Comput Biol ; 19(10): e1011513, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782667

RESUMO

Defective interfering particles (DIPs) are virus-like particles that occur naturally during virus infections. These particles are defective, lacking essential genetic materials for replication, but they can interact with the wild-type virus and potentially be used as therapeutic agents. However, the effect of DIPs on infection spread is still unclear due to complicated stochastic effects and nonlinear spatial dynamics. In this work, we develop a model with a new hybrid method to study the spatial-temporal dynamics of viruses and DIPs co-infections within hosts. We present two different scenarios of virus production and compare the results from deterministic and stochastic models to demonstrate how the stochastic effect is involved in the spatial dynamics of virus transmission. We compare the spread features of the virus in simulations and experiments, including the formation and the speed of virus spread and the emergence of stochastic patchy patterns of virus distribution. Our simulations simultaneously capture observed spatial spread features in the experimental data, including the spread rate of the virus and its patchiness. The results demonstrate that DIPs can slow down the growth of virus particles and make the spread of the virus more patchy.


Assuntos
Vírus Defeituosos Interferentes , Vírus Defeituosos , Vírus Defeituosos/genética , Replicação Viral , Vírion
4.
Viruses ; 14(12)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560818

RESUMO

The genomes of RNA viruses may be monopartite or multipartite, and sub-genomic particles such as defective RNAs (D RNAs) or satellite RNAs (satRNAs) can be associated with some of them. D RNAs are small, deletion mutants of a virus that have lost essential functions for independent replication, encapsidation and/or movement. D RNAs are common elements associated with human and animal viruses, and they have been described for numerous plant viruses so far. Over 30 years of studies on D RNAs allow for some general conclusions to be drawn. First, the essential condition for D RNA formation is prolonged passaging of the virus at a high cellular multiplicity of infection (MOI) in one host. Second, recombination plays crucial roles in D RNA formation. Moreover, during virus propagation, D RNAs evolve, and the composition of the particle depends on, e.g., host plant, virus isolate or number of passages. Defective RNAs are often engaged in transient interactions with full-length viruses-they can modulate accumulation, infection dynamics and virulence, and are widely used, i.e., as a tool for research on cis-acting elements crucial for viral replication. Nevertheless, many questions regarding the generation and role of D RNAs in pathogenesis remain open. In this review, we summarise the knowledge about D RNAs of plant viruses obtained so far.


Assuntos
Vírus de Plantas , Vírus de RNA , Animais , Humanos , RNA Viral/genética , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Satélite , Replicação Viral , Vírus Defeituosos/genética
5.
Commun Biol ; 5(1): 1140, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302891

RESUMO

Defective interfering (DI) particles arise during virus propagation, are conditional on parental virus for replication and packaging, and interfere with viral expansion. There is much interest in developing DIs as anti-viral agents. Here we characterize DI particles that arose following serial passaging of SARS-CoV-2 at high multiplicity of infection. The prominent DIs identified have lost ~84% of the SARS-CoV-2 genome and are capable of attenuating parental viral titers. Synthetic variants of the DI genomes also interfere with infection and can be used as conditional, gene delivery vehicles. In addition, the DI genomes encode an Nsp1-10 fusion protein capable of attenuating viral replication. These results identify naturally selected defective viral genomes that emerged and stably propagated in the presence of parental virus.


Assuntos
COVID-19 , Vírus Defeituosos , Humanos , Vírus Defeituosos/genética , SARS-CoV-2/genética , Vírus Defeituosos Interferentes , RNA Viral/genética
6.
J Virol ; 96(21): e0117822, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226985

RESUMO

Defective viral genomes (DVGs), which are generated by the viral polymerase in error during RNA replication, can trigger innate immunity and are implicated in altering the clinical outcome of infection. Here, we investigated the impact of DVGs on innate immunity and pathogenicity in a BALB/c mouse model of influenza virus infection. We generated stocks of influenza viruses containing the internal genes of an H5N1 virus that contained different levels of DVGs (indicated by different genome-to-PFU ratios). In lung epithelial cells, the high-DVG stock was immunostimulatory at early time points postinfection. DVGs were amplified during virus replication in myeloid immune cells and triggered proinflammatory cytokine production. In the mouse model, infection with the different virus stocks produced divergent outcomes. The high-DVG stock induced an early type I interferon (IFN) response that limited viral replication in the lungs, resulting in minimal weight loss. In contrast, the virus stock with low levels of DVGs replicated to high titers and amplified DVGs over time, resulting in elevated levels of proinflammatory cytokines accompanied by rapid weight loss and increased morbidity and mortality. Our results suggest that the timing and levels of immunostimulatory DVGs generated during infection contribute to H5N1 pathogenesis. IMPORTANCE Mammalian infections with highly pathogenic avian influenza viruses (HPAIVs) cause severe disease associated with excessive proinflammatory cytokine production. Aberrant replication products, such as defective viral genomes (DVGs), can stimulate the antiviral response, and cytokine induction is associated with their emergence in vivo. We show that stocks of a recombinant virus containing HPAIV internal genes that differ in their amounts of DVGs have vastly diverse outcomes in a mouse model. The high-DVG stock resulted in extremely mild disease due to suppression of viral replication. Conversely, the stock that contained low DVGs but rapidly accumulated DVGs over the course of infection led to severe disease. Therefore, the timing of DVG amplification and proinflammatory cytokine production impact disease outcome, and these findings demonstrate that not all DVG generation reduces viral virulence. This study also emphasizes the crucial requirement to examine the quality of virus preparations regarding DVG content to ensure reproducible research.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Camundongos , Animais , Vírus Defeituosos/genética , Vírus da Influenza A/genética , Camundongos Endogâmicos BALB C , Virus da Influenza A Subtipo H5N1/genética , Genoma Viral , Replicação Viral/genética , Citocinas/genética , Redução de Peso/genética , Mamíferos/genética
7.
Front Cell Infect Microbiol ; 12: 942987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873151

RESUMO

Bovine herpesvirus type 1 (BHV-1) is a neurotropic herpesvirus that causes infectious rhinotracheitis and vulvovaginitis in cattle. The virion host shutoff protein encoded by the BHV-1 UL41 gene is highly conserved in the Alphaherpesvirinae subfamily. This protein can degrade viral and host messenger RNA (mRNA) to interrupt host defense and facilitate the rapid proliferation of BHV-1. However, studies on the BHV-1 UL41 gene are limited, and BHV-1 defective virus construction using the CRISPR/Cas9 system is somewhat challenging. In this study, we rapidly constructed a BHV-1 UL41-deficient strain using the CRISPR/Cas9 system in BL primary bovine-derived cells. BHV-1 UL41-defective mutants were screened by Western blot analysis using specific polyclonal antibodies as the primary antibodies. During the isolation and purification of the defective strain, a mixed virus pool edited by an efficient single-guide RNA (sgRNA) showed a plaque number reduction. Viral growth property assessment showed that BHV-1 UL41 was dispensable for replication, but the UL41-defective strain exhibited early and slowed viral replication. Furthermore, the BHV-1 UL41-deficient strain exhibited enhanced sensitivity to temperature and acidic environments. The BHV-1 UL41-deficient strain regulated viral and host mRNA levels to affect viral replication.


Assuntos
Sistemas CRISPR-Cas , Proteínas Virais , Animais , Bovinos , Vírus Defeituosos/genética , Vírus Defeituosos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
8.
Viruses ; 14(5)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632855

RESUMO

The generation of different types of defective viral genomes (DVG) is an unavoidable consequence of the error-prone replication of RNA viruses. In recent years, a particular class of DVGs, those containing long deletions or genome rearrangements, has gain interest due to their potential therapeutic and biotechnological applications. Identifying such DVGs in high-throughput sequencing (HTS) data has become an interesting computational problem. Several algorithms have been proposed to accomplish this goal, though all incur false positives, a problem of practical interest if such DVGs have to be synthetized and tested in the laboratory. We present a metasearch tool, DVGfinder, that wraps the two most commonly used DVG search algorithms in a single workflow for the identification of the DVGs in HTS data. DVGfinder processes the results of ViReMa-a and DI-tector and uses a gradient boosting classifier machine learning algorithm to reduce the number of false-positive events. The program also generates output files in user-friendly HTML format, which can help users to explore the DVGs identified in the sample. We evaluated the performance of DVGfinder compared to the two search algorithms used separately and found that it slightly improves sensitivities for low-coverage synthetic HTS data and DI-tector precision for high-coverage samples. The metasearch program also showed higher sensitivity on a real sample for which a set of copy-backs were previously validated.


Assuntos
Vírus Defeituosos , Vírus de RNA , Vírus Defeituosos/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de RNA/genética , RNA-Seq
9.
Med ; 3(1): 1-2, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35590140

RESUMO

One of the most pressing challenges in medicine is to develop fast and effective strategies to combat infections. Xiao et al.1 report proof-of-concept experiments for the use of defective viral genomes as broad-spectrum antivirals by harnessing their ability to stimulate the innate immune response.


Assuntos
Antivirais , Genoma Viral , Antivirais/farmacologia , Vírus Defeituosos/genética , Imunidade Inata
10.
PLoS Pathog ; 17(12): e1010125, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882752

RESUMO

Found in a diverse set of viral populations, defective interfering particles are parasitic variants that are unable to replicate on their own yet rise to relatively high frequencies. Their presence is associated with a loss of population fitness, both through the depletion of key cellular resources and the stimulation of innate immunity. For influenza A virus, these particles contain large internal deletions in the genomic segments which encode components of the heterotrimeric polymerase. Using a library-based approach, we comprehensively profile the growth and replication of defective influenza species, demonstrating that they possess an advantage during genome replication, and that exclusion during population expansion reshapes population composition in a manner consistent with their final, observed, distribution in natural populations. We find that an innate immune response is not linked to the size of a deletion; however, replication of defective segments can enhance their immunostimulatory properties. Overall, our results address several key questions in defective influenza A virus biology, and the methods we have developed to answer those questions may be broadly applied to other defective viruses.


Assuntos
Vírus Defeituosos/genética , Aptidão Genética/genética , Vírus da Influenza A/genética , Animais , Linhagem Celular , Genoma Viral , Humanos
11.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960744

RESUMO

Development of potential HIV-1 curative interventions requires accurate characterization of the proviral reservoir, defined as host-integrated viral DNA genomes that drive rebound of viremia upon halting ART (antiretroviral therapy). Evaluation of such interventions necessitates methods capable of pinpointing the rare, genetically intact, replication-competent proviruses within a background of defective proviruses. This evaluation can be achieved by identifying the distinct integration sites of intact proviruses within host genomes and monitoring the dynamics of these proviruses and host cell lineages over longitudinal sampling. Until recently, molecular genetic approaches at the single proviral level have been generally limited to one of a few metrics, such as proviral genome sequence/intactness, host-proviral integration site, or replication competency. New approaches, taking advantage of MDA (multiple displacement amplification) for WGA (whole genome amplification), have enabled multiparametric proviral characterization at the single-genome level, including proviral genome sequence, host-proviral integration site, and phenotypic characterization of the host cell lineage, such as CD4 memory subset and antigen specificity. In this review, we will examine the workflow of MDA-augmented molecular genetic approaches to study the HIV-1 reservoir, highlighting technical advantages and flexibility. We focus on a collection of recent studies in which investigators have used these approaches to comprehensively characterize intact and defective proviruses from donors on ART, investigate mechanisms of elite control, and define cell lineage identity and antigen specificity of infected CD4+ T cell clones. The highlighted studies exemplify how these approaches and their future iterations will be key in defining the targets and evaluating the impacts of HIV curative interventions.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/genética , Provírus/genética , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade , Vírus Defeituosos/genética , Genoma Viral , Infecções por HIV/tratamento farmacológico , Paciente HIV Positivo não Progressor , HIV-1/fisiologia , Humanos , Células T de Memória/virologia , Técnicas de Amplificação de Ácido Nucleico , Provírus/fisiologia , Viremia , Integração Viral , Latência Viral
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686605

RESUMO

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , RNA Viral/administração & dosagem , Replicon , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Feminino , Deleção de Genes , Genes env , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , RNA Viral/genética , RNA Viral/imunologia , Vacinas de DNA , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Virulência/imunologia
13.
PLoS Comput Biol ; 17(9): e1009357, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491996

RESUMO

Cell culture-derived defective interfering particles (DIPs) are considered for antiviral therapy due to their ability to inhibit influenza A virus (IAV) production. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNAs) rendering them replication-incompetent. However, they can propagate alongside their homologous standard virus (STV) during infection in a competition for cellular and viral resources. So far, experimental and modeling studies for IAV have focused on either the intracellular or the cell population level when investigating the interaction of STVs and DIPs. To examine these levels simultaneously, we conducted a series of experiments using highly different multiplicities of infections for STVs and DIPs to characterize virus replication in Madin-Darby Canine Kidney suspension cells. At several time points post infection, we quantified virus titers, viable cell concentration, virus-induced apoptosis using imaging flow cytometry, and intracellular levels of vRNA and viral mRNA using real-time reverse transcription qPCR. Based on the obtained data, we developed a mathematical multiscale model of STV and DIP co-infection that describes dynamics closely for all scenarios with a single set of parameters. We show that applying high DIP concentrations can shut down STV propagation completely and prevent virus-induced apoptosis. Interestingly, the three observed viral mRNAs (full-length segment 1 and 5, defective interfering segment 1) accumulated to vastly different levels suggesting the interplay between an internal regulation mechanism and a growth advantage for shorter viral RNAs. Furthermore, model simulations predict that the concentration of DIPs should be at least 10000 times higher than that of STVs to prevent the spread of IAV. Ultimately, the model presented here supports a comprehensive understanding of the interactions between STVs and DIPs during co-infection providing an ideal platform for the prediction and optimization of vaccine manufacturing as well as DIP production for therapeutic use.


Assuntos
Vírus Defeituosos , Vírus da Influenza A , Modelos Biológicos , Infecções por Orthomyxoviridae/virologia , Replicação Viral/fisiologia , Animais , Antivirais , Técnicas de Cultura de Células , Vírus Defeituosos/química , Vírus Defeituosos/genética , Vírus Defeituosos/patogenicidade , Cães , Vírus da Influenza A/química , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Células Madin Darby de Rim Canino , RNA Viral/genética
14.
Sci Rep ; 11(1): 17758, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493784

RESUMO

DNA viruses can exploit host cellular epigenetic processes to their advantage; however, the epigenome status of most DNA viruses remains undetermined. Third generation sequencing technologies allow for the identification of modified nucleotides from sequencing experiments without specialized sample preparation, permitting the detection of non-canonical epigenetic modifications that may distinguish viral nucleic acid from that of their host, thus identifying attractive targets for advanced therapeutics and diagnostics. We present a novel nanopore de novo assembly pipeline used to assemble a misidentified Camelpox vaccine. Two confirmed deletions of this vaccine strain in comparison to the closely related Vaccinia virus strain modified vaccinia Ankara make it one of the smallest non-vector derived orthopoxvirus genomes to be reported. Annotation of the assembly revealed a previously unreported signal peptide at the start of protein A38 and several predicted signal peptides that were found to differ from those previously described. Putative epigenetic modifications around various motifs have been identified and the assembly confirmed previous work showing the vaccine genome to most closely resemble that of Vaccinia virus strain Modified Vaccinia Ankara. The pipeline may be used for other DNA viruses, increasing the understanding of DNA virus evolution, virulence, host preference, and epigenomics.


Assuntos
Vírus Defeituosos/genética , Epigenoma , Genoma Viral , Sequenciamento por Nanoporos , Orthopoxvirus/genética , Sinais Direcionadores de Proteínas/genética , Análise de Sequência de DNA/métodos , Vírus Vaccinia/genética , Proteínas Virais/genética , Vacinas Virais , Motivos de Aminoácidos , Sequência de Aminoácidos , Vírus de DNA/genética , Anotação de Sequência Molecular , Orthopoxvirus/imunologia , Deleção de Sequência , Software , Especificidade da Espécie , Emirados Árabes Unidos , Vacinas Atenuadas
15.
J Virol ; 95(24): e0117421, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34550771

RESUMO

Defective interfering particles (DIPs) of influenza A virus (IAV) are naturally occurring mutants that have an internal deletion in one of their eight viral RNA (vRNA) segments, rendering them propagation-incompetent. Upon coinfection with infectious standard virus (STV), DIPs interfere with STV replication through competitive inhibition. Thus, DIPs are proposed as potent antivirals for treatment of the influenza disease. To select corresponding candidates, we studied de novo generation of DIPs and propagation competition between different defective interfering (DI) vRNAs in an STV coinfection scenario in cell culture. A small-scale two-stage cultivation system that allows long-term semi-continuous propagation of IAV and its DIPs was used. Strong periodic oscillations in virus titers were observed due to the dynamic interaction of DIPs and STVs. Using next-generation sequencing, we detected a predominant formation and accumulation of DI vRNAs on the polymerase-encoding segments. Short DI vRNAs accumulated to higher fractions than longer ones, indicating a replication advantage, yet an optimum fragment length was observed. Some DI vRNAs showed breaking points in a specific part of their bundling signal (belonging to the packaging signal), suggesting its dispensability for DI vRNA propagation. Over a total cultivation time of 21 days, several individual DI vRNAs accumulated to high fractions, while others decreased. Using reverse genetics for IAV, purely clonal DIPs derived from highly replicating DI vRNAs were generated. We confirm that these DIPs exhibit a superior in vitro interfering efficacy compared to DIPs derived from lowly accumulated DI vRNAs and suggest promising candidates for efficacious antiviral treatment. IMPORTANCE Defective interfering particles (DIPs) emerge naturally during viral infection and typically show an internal deletion in the viral genome. Thus, DIPs are propagation-incompetent. Previous research suggests DIPs as potent antiviral compounds for many different virus families due to their ability to interfere with virus replication by competitive inhibition. For instance, the administration of influenza A virus (IAV) DIPs resulted in a rescue of mice from an otherwise lethal IAV dose. Moreover, no apparent toxic effects were observed when only DIPs were administered to mice and ferrets. IAV DIPs show antiviral activity against many different IAV strains, including pandemic and highly pathogenic avian strains, and even against nonhomologous viruses, such as SARS-CoV-2, by stimulation of innate immunity. Here, we used a cultivation/infection system, which exerted selection pressure toward accumulation of highly competitive IAV DIPs. These DIPs showed a superior interfering efficacy in vitro, and we suggest them for effective antiviral therapy.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos/métodos , Vírus da Influenza A , Influenza Humana/virologia , RNA Viral , Animais , Técnicas de Cultura de Células , Linhagem Celular , Vírus Defeituosos Interferentes , Vírus Defeituosos/genética , Cães , Deleção de Genes , Genoma Viral , Humanos , Imunidade Inata/efeitos dos fármacos , Células Madin Darby de Rim Canino , Oscilometria , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
16.
Br J Haematol ; 195(2): 249-255, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34431085

RESUMO

Chronic active Epstein-Barr virus (CAEBV) disease is a rare condition characterised by persistent EBV infection in previously healthy individuals. Defective EBV genomes were found in East Asian patients with CAEBV. In the present study, we sequenced 14 blood EBV samples from three UK patients with CAEBV, comparing the results with saliva CAEBV samples and other conditions. We observed EBV deletions in blood, some of which may disrupt viral replication, but not saliva in CAEBV. Deletions were lost overtime after successful treatment. These findings are compatible with CAEBV being associated with the evolution and persistence of EBV+ haematological clones that are lost on successful treatment.


Assuntos
Infecções por Vírus Epstein-Barr/sangue , Herpesvirus Humano 4/genética , Saliva/metabolismo , Deleção de Sequência/genética , Adolescente , Biomarcadores/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Doença Crônica , Vírus Defeituosos/genética , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/epidemiologia , Ásia Oriental/epidemiologia , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Transplante de Células-Tronco de Sangue Periférico/métodos , Polimorfismo de Nucleotídeo Único/genética , Rituximab/uso terapêutico , Resultado do Tratamento , Replicação Viral/genética
17.
J Virol ; 95(17): e0071421, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34160256

RESUMO

Ebola virus (EBOV), of the family Filoviridae, is an RNA virus that can cause a hemorrhagic fever with a high mortality rate. Defective viral genomes (DVGs) are truncated genomes that have been observed during multiple RNA virus infections, including in vitro EBOV infection, and have previously been associated with viral persistence and immunostimulatory activity. As DVGs have been detected in cells persistently infected with EBOV, we hypothesized that DVGs may also accumulate during viral replication in filovirus-infected hosts. Therefore, we interrogated sequence data from serum and tissue samples using a bioinformatics tool in order to identify the presence of DVGs in nonhuman primates (NHPs) infected with EBOV, Sudan virus (SUDV), or Marburg virus (MARV). Multiple 5' copy-back DVGs (cbDVGs) were detected in NHP serum during the acute phase of filovirus infection. While the relative abundance of total DVGs in most animals was low, serum collected during acute EBOV and SUDV infections, but not MARV infections, contained a higher proportion of short trailer sequence cbDVGs than the challenge stock. This indicated an accumulation of these DVGs throughout infection, potentially due to the preferential replication of short DVGs over the longer viral genome. Using reverse transcriptase PCR (RT-PCR) and deep sequencing, we also confirmed the presence of 5' cbDVGs in EBOV-infected NHP testes, which is of interest due to EBOV persistence in semen of male survivors of infection. This work suggests that DVGs play a role in EBOV infection in vivo and that further study will lead to a better understanding of EBOV pathogenesis. IMPORTANCE The study of filovirus pathogenesis is critical for understanding the consequences of infection and for the development of strategies to ameliorate future outbreaks. Defective viral genomes (DVGs) have been detected during EBOV infections in vitro; however, their presence in in vivo infections remains unknown. In this study, DVGs were detected in samples collected from EBOV- and SUDV-infected nonhuman primates (NHPs). The accumulation of these DVGs in the trailer region of the genome during infection indicates a potential role in EBOV and SUDV pathogenesis. In particular, the presence of DVGs in the testes of infected NHPs requires further investigation as it may be linked to the establishment of persistence.


Assuntos
Vírus Defeituosos/genética , Ebolavirus/genética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Macaca mulatta/virologia , Replicação Viral , Animais , Feminino , Masculino
18.
Commun Biol ; 4(1): 557, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976375

RESUMO

Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.


Assuntos
Vírus Defeituosos , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/crescimento & desenvolvimento , Dengue/prevenção & controle , Replicação Viral , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vírus Defeituosos/genética , Vírus Defeituosos/metabolismo , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Genes Reporter , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , RNA Viral/biossíntese , RNA Viral/genética , Células Vero , Carga Viral
19.
BMC Biol ; 19(1): 91, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941189

RESUMO

BACKGROUND: Infections with influenza A virus (IAV) cause high morbidity and mortality in humans. Additional to vaccination, antiviral drugs are a treatment option. Besides FDA-approved drugs such as oseltamivir or zanamivir, virus-derived defective interfering (DI) particles (DIPs) are considered promising new agents. IAV DIPs typically contain a large internal deletion in one of their eight genomic viral RNA (vRNA) segments. Consequently, DIPs miss the genetic information necessary for replication and can usually only propagate by co-infection with infectious standard virus (STV), compensating for their defect. In such a co-infection scenario, DIPs interfere with and suppress STV replication, which constitutes their antiviral potential. RESULTS: In the present study, we generated a genetically engineered MDCK suspension cell line for production of a purely clonal DIP preparation that has a large deletion in its segment 1 (DI244) and is not contaminated with infectious STV as egg-derived material. First, the impact of the multiplicity of DIP (MODIP) per cell on DI244 yield was investigated in batch cultivations in shake flasks. Here, the highest interfering efficacy was observed for material produced at a MODIP of 1E-2 using an in vitro interference assay. Results of RT-PCR suggested that DI244 material produced was hardly contaminated with other defective particles. Next, the process was successfully transferred to a stirred tank bioreactor (500 mL working volume) with a yield of 6.0E+8 PFU/mL determined in genetically modified adherent MDCK cells. The produced material was purified and concentrated about 40-fold by membrane-based steric exclusion chromatography (SXC). The DI244 yield was 92.3% with a host cell DNA clearance of 97.1% (99.95% with nuclease digestion prior to SXC) and a total protein reduction of 97.2%. Finally, the DIP material was tested in animal experiments in D2(B6).A2G-Mx1r/r mice. Mice infected with a lethal dose of IAV and treated with DIP material showed a reduced body weight loss and all animals survived. CONCLUSION: In summary, experiments not only demonstrated that purely clonal influenza virus DIP preparations can be obtained with high titers from animal cell cultures but confirmed the potential of cell culture-derived DIPs as an antiviral agent.


Assuntos
Técnicas de Cultura de Células , Coinfecção , Vírus da Influenza A , Animais , Antivirais/farmacologia , Vírus Defeituosos/genética , Felodipino , Camundongos
20.
J Virol ; 95(15): e0080221, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011551

RESUMO

Gene drives are genetic systems designed to efficiently spread a modification through a population. They have been designed almost exclusively in eukaryotic species, especially in insects. We recently developed a CRISPR-based gene drive system in herpesviruses that relies on similar mechanisms and could efficiently spread into a population of wild-type viruses. A common consequence of gene drives in insects is the appearance and selection of drive-resistant sequences that are no longer recognized by CRISPR-Cas9. In this study, we analyzed in cell culture experiments the evolution of resistance in a viral gene drive against human cytomegalovirus. We report that after an initial invasion of the wild-type population, a drive-resistant population is positively selected over time and outcompetes gene drive viruses. However, we show that targeting evolutionarily conserved sequences ensures that drive-resistant viruses acquire long-lasting mutations and are durably attenuated. As a consequence, and even though engineered viruses do not stably persist in the viral population, remaining viruses have a replication defect, leading to a long-term reduction of viral levels. This marks an important step toward developing effective gene drives in herpesviruses, especially for therapeutic applications. IMPORTANCE The use of defective viruses that interfere with the replication of their infectious parent after coinfecting the same cells-a therapeutic strategy known as viral interference-has recently generated a lot of interest. The CRISPR-based system that we recently reported for herpesviruses represents a novel interfering strategy that causes the conversion of wild-type viruses into new recombinant viruses and drives the native viral population to extinction. In this study, we analyzed how targeted viruses evolved resistance against the technology. Through numerical simulations and cell culture experiments with human cytomegalovirus, we showed that after the initial propagation, a resistant viral population is positively selected and outcompetes engineered viruses over time. We show, however, that targeting evolutionarily conserved sequences ensures that resistant viruses are mutated and attenuated, which leads to a long-term reduction of viral levels. This marks an important step toward the development of novel therapeutic strategies against herpesviruses.


Assuntos
Sistemas CRISPR-Cas/genética , Sequência Conservada/genética , Citomegalovirus/genética , Tecnologia de Impulso Genético/métodos , Interferência Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Citomegalovirus/crescimento & desenvolvimento , Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/terapia , Vírus Defeituosos/genética , Farmacorresistência Viral/genética , Genes Virais/genética , Humanos , Alinhamento de Sequência , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...